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Conventional theories of nucleation predict that the metastable state has an 
average lifetime which monotonically decreases as the system is quenched 
further from the condensation point. However, theories based on the coarse- 
grained Ginzbur~Landau free energy functional seem to indicate that for 
systems above six dimensions there is a sharp spinodal dividing the metastable 
and unstable regimes where the lifetime of the metastable state diverges. Monte 
Carlo simulations are used to investigate this discrepency. Both nucleation rates 
and bulk susceptibility measurements seem to support the prediction of the 
Ginzburg-Landau theories. 
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1. I N T R O D U C T I O N  

In the theory of first-order phase transitions, it is well known that 
mean-field approximations exhibit a sharp boundary between the 
metastable and unstable regimes. (1) This is commonly referred to as the 
spinodal or limit of metastability. Although the spinodal is well defined in 
mean-field approximations, it is not observed in more realistic systems with 
short-range forces. (2) Instead, one finds a region of smooth crossover from 
metastable to unstable behavior in which the initially metastable system 
decays to equilibrium via the formation of nucleating droplets. (1) As the 
system is quenched closer to the unstable regime, nucleating droplets occur 
with greater frequency and the lifetime of the metastable state decreases 
monotonically. 
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In spite of the success of the above picture, there have been several 
hints in theoretical studies of metastable Ising models which suggest that 
the behavior is different in systems where the dimension of space d is 
greater than six. A cursory glance at the results seems to indicate that the 
lifetime of the metastable state in fact diverges at a well-defined spinodal. 
For example, in a renormalization group analysis of Ginzburg-Landau 
models with uniform field densities, Gunton and Yalabik discovered a fixed 
point representing the spinodal. (3) Their calculation showed that the fixed 
point was stable above six dimensions even under perturbations which 
introduced a small gradient term. The small spatial variations should have 
allowed nucleating droplets to form which would have destroyed the 
stability of the system. 

In addition, the work of Klein and Unger concerning the effect of the 
spinodal in long-range Ising models resulted in a scaling form for the 
nucleation barrier AF which diverged at the spinodal above six dimen- 
sions(4): 

AF ~ R a ( A H )  3/2 - d/4 ( 1 ) 

Here, AH is the reduced distance to the spinodal value of the external field 
at constant temperature and R is the range of interaction between spins. 

To date, these anomalous results have largely been ignored. This is not 
too surprising, since the divergence of the lifetime of the metastable state 
with quench depth is a feature which is not observed in standard 
phenomenological nucleation theories. However, the theories based on the 
coarse-grained Ginzburg-Landau free energy functional seem to give the 
correct predictions in the case of Ising models with long-range inter- 
actions. (5-7) It is the purpose of the present work to determine whether or 
not a spinodal singularity appears in nearest-neighbor Ising models above 
six dimensions. 

This problem is approached in two different ways. First, nucleation 
rates are measured and compared to the theoretical values predicted by the 
classical nucleation theory (CNT) of Becket and D6ring (11 for d=  5 and 
d = 7  systems. Next, the behavior of the magnetic susceptibility in the 
metastable state (i.e., the quasistatic susceptibility) is investigated and 
compared to the results from a Curie-Weiss model. (8~ 

2. M E T H O D S  

The Ising models in the simulations are governed by the usual 
Hamiltonian: 

~-=- - J  ~ s , s j -H~s i  (2) 
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The first sum is over all nearest-neighbor pairs of "spins and the coupling 
constant ~ is positive, so that the system is ferromagnetic. In the second 
sum, H is the constant, external field which couples to all spins. 

The simulations employ Glauber dynamics (Model A in the 
categorization of Hohenberg and Halperin/9)), using the standard 
Metropolis heat-bath algorithm. (1~ Every spin in the system is tested for 
flipping once per Monte Carlo step. The temperature is set to -0.55T~. and 
helical boundary conditions are used. There was no appreciable difference 
observed between the behavior of simulations with helical boundary condi- 
tions and those with periodic boundary conditions which were employed in 
a preliminary study at Boston University. 

Initially, the system is configured so that all spins are pointing 
antiparallel to the external field. Under the heat-bath dynamics, the system 
can then relax into a metastable state where the majority of spins remain 
antiparallel to the field. If H is too large, the system is unstable and no 
evidence of a metastable state is observed. 

The shorter simulations were run on SUN4 workstations and on a 
Hewlett-Packard mainframe. Longer simulations were run on a Cray-YMP 
and were vectorized according to the "checkerboard" algorithm (1I) which is 
a standard method used for vectorization of nearest-neighbor Ising models. 

3. NUCLEATION RATES 

A test for the existence of spinodal singularities can be performed 
through the measurement of nucleation rates. In general, a metastable 
system is observed to decay to equilibrium by means of the formation of 
local regions of the stable phase. Random fluctuations cause these centers 
or droplets to form according to a certain size distribution. When a droplet 
greater than some critical size occurs, it rapidly grows in a radial fashion 
and takes the whole system to equilibrium. These are called nucleating 
droplets. The number of nucleating droplets which form per unit time per 
unit volume is called the nucleation rate. 

In the limit of small external field, the nucleation rates are found to 
be accurately described by the phenomenological theory of Becker and 
D6ring. ~1) According to this theory, the nucleation rate J is given by the 
following expression: 

j =  pkpse_e/h~d 1) (3) 

The variable c depends upon the dimension of space, the surface tension, 
and the temperature. It is independent of the external field. The prefaetors 
of the exponential are defined according to their dependence upon the 
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details of the dynamics. Ps is a function only of the equilibrium properties 
of the system. Pk is a function which depends upon the dynamics used in 
the simulation. 

When the external field is small, the exponential in Eq. (3) dominates 
the behavior of the nucleation rate. Since the theory is valid in the limit of 
small field, this is the regime of interest. When the log of the nucleation rate 
is plotted as a function of 1/h (a ~, it should behave linearly with a 
negative slope having magnitude c. This is considered to be the hallmark 
of classical nucleation theory. 

Given the value of the bulk surface tension, c may be calculated. It is 
difficult to obtain accurately a value for the surface tension in high dimen- 
sions. However, the value of the surface tension in the limit where the tem- 
perature goes to zero is known to be equal to 2 J  per unit surface area in 
all dimensions. As the temperature increases, the surface tension monotoni- 
cally decreases and goes to zero at the critical point. The T = 0 value of the 
surface tension can be used to calculate an upper bound for c, and this is 
the approach used in the present work. 

Another difficulty encountered when attempting to measure nucleation 
rates in high dimensions is the identification of nucleating droplets. It is 
time consuming to search for droplets every Monte Carlo step. Because of 
this problem, a different criterion for J was chosen. The simulations were 
run until the magnetization changed sign. This means that at least one 
nucleating droplet had formed and grown to a mass containing more than 
half of the spins in the system. After taking an average of several of these 
times, the nucleation rate was defined to be the inverse of the average time 
for the magnetization to flip divided by the volume of the system. 

The criterion is not good for cases where more than one droplet forms 
during the course of the simulation. It is also bad when the time for the 
subsequent growth of the nucleating droplet is longer than or comparable 
to the average time of formation. However, both of these situations occur 
when the external field is relatively large and the system is not in the CNT 
regime. For small nucleation rates the criterion is assumed to be adequate. 

Figure 1 shows a semilog plot of the nucleation rate versus 1/h (d- 1~ for 
d = 5 for several different system sizes. The larger systems show two distinct 
regimes. On the left-hand side of the plot the curves are relatively flat. This 
is where the external field is large and should correspond to the regime 
where the system has no clearly definable metastable state. Instead, it is 
unstable and quickly decays to equilibrium in a certain number of Monte 
Carlo steps which is insensitive to the value of the external field. 

On the right-hand side of Fig. 1, the large systems exhibit a second 
type of behavior. This is presumed to be the regime governed by CNT. The 
time for the formation of droplets is very long and J is independent of 
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Fig. 1. Nucleat ion  rates for d = 5 Ising models.  Bullets, triangles, and crosses indicate system 
sizes of  L = 5, 7, and 9, respectively. The dashed line gives the max imu m slope predicted by 
classical nucleat ion theory. 

system size. Indicated in the plot is the maximum CNT slope, which uses 
the T = 0 surface tension (a smaller value of the surface tension would give 
a smaller slope). The temperature is approximately 0.55Tc. If, as in two 
and three dimensions, the surface tension has decreased by 5%, the 
theoretical slope should be about 3/4 of the maximum. This appears to be 
roughly true in this case. 

Figure 2 shows the nucleation data for the d = 7 simulations. As in the 
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Nucleat ion  rates for d =  7 Ising models.  Bullets, triangles, crosses,  stars, and 
d iamonds  indicate system sizes of  L = 3, 4, 5, 7, and 9, respectively. 
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d = 5  plots, the large systems exhibit two regimes. The left-hand side 
appears to be the unstable regime where the nucleation rate does not 
depend strongly upon the external field. The right-hand side should be 
governed by the exponential factor in Eq. (4) which is predicted by CNT. 

Since the d = 7 nucleation data fall off so sharply in large systems, it 
is instructive to look at the data with an expanded abscissa. Figure 3 shows 
the data in the region where the L = 7 and L = 9 plots exhibit the presumed 
CNT behavior. A maximum bound on the slope calculated using the T=  0 
surface tension is also shown. Both the L = 7 and the L = 9 data seem to 
have slopes which are greater than the maximum CNT bound. If the sur- 
face tension is assumed to be 5 % less than the T=  0 value, the theoretical 
slope should be roughly 2/3 that of the pictured slope and thus in even 
stronger disagreement with the data! 

In order for the J values to behave according to CNT at small values 
of the external field, something remarkable must happen in the plots at 
lower nucleation rates. For example, the loci could continue their steep 
descent and then deviate to the smaller CNT slope. This would indicate the 
presence of another time scale in the problem. Although a possibility, the 
author does not know of any physical reason for this type of behavior to 
occur. Another explanation is that there is actually a spinodal singularity 
in the d=  7 system. In the limit where the size of the system becomes 
infinite, the observed steep dropoff would approach a step function as in 
the case of an infinite-range mean-field system. The location of the step 
would be the sharp spinodal line. 
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Fig. 3. Expanded view of d = 7 nucleation rates from Fig. 2 in the regime where the L = 7 
and L = 9 data drop sharply. The dashed line gives the max imum slope predicted by classical 

nucleation theory. 
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4. QUASISTATIC SUSCEPTIBILITY 

The quasistatic susceptibility is defined as the fluctuations in the 
magnetization while the system remains metastable: 

Zqs=U((mZ)rns  - (m)2ms) (4) 

Here, N is the number of spins in the system and m is the magnetization 
per spin. The brackets (-)ms indicate an average over metastable con- 
figurations. It is a restricted average, since configurations near equilibrium 
are excluded. Although this type of average is difficult to define mathemati- 
cally, it is a physically valid operation. In both experimental systems and 
in simulations, metastable states are commonly observed where the lifetime 
is found to be very large with respect to all other relevant time scales. 

In Fig. 4, the quasistatic susceptibility is plotted versus the magnetic 
field H for five-, six-, and seven-dimensional metastable nearest-neighbor 
Ising models. Each point was taken from averages of three runs of 4000 
Monte Carlo steps per spin. If the system decayed during this time, no data 
were recorded. 

Qualitatively in five and six dimensions, ~qs increases slightly as H is 
increased and the system is quenched deeper into the metastable regime. 
The curves end where the quasistatic susceptibility can no longer be defined 
because the systems do not remain metastable for the duration of the 
simulation. It might be possible to try to measure critical exponents based 
on an extrapolation of these "pseudospinodal" curves, but there does not 
appear to be any real divergence Of Zq s. 
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Fig. 4. Quasistatic susceptibility for d= 5, 6, and 7 indicated by crosses, triangles, and 
pluses, respectively. 
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The behavior of Zqs in seven dimensions is noticeably different. Here 
the quasistatic susceptibility increases more sharply than that of the other 
dimensions. For a system with length L = 9 (i.e., 9 7 4  - 96 total spins) and a 
temperature T =  0.55Tc, Zqs increases by a factor of 110 from its value at 
the condensation point. This behavior is qualitatively the same as what is 
observed near the spinodal in a mean-field simulation. 

In Fig. 5, the quasistatic susceptibility for the Curie-Weiss mean-field 
approximation is plotted along with data for the d =  7 Ising model versus 
the reduced magnetic field zlh. Data for five different system sizes are 
shown. The temperature has been chosen for the Curie-Weiss model, so 
that the susceptibility at the condensation point matches that of the d =  7 
system. The numerical value for the presumed d =  7 spinodal is chosen so 
that the data lie as close to the Curie-Weiss curve as possible. 

As the system size increases, the d =  7 data appear to approach the 
Curie-Weiss plot. The left-hand side of the curve is the asymptotic regime. 
Here the behavior approaches the expected scaling law near the spinodal{t): 

Z.s ~ (•h) ,/2 (5) 

For each different system size there is a noticeable "tail" for small Ah where 
the plots end. A similar effect has been observed in data from Ring models 
with long-range interactions. (7) Since the tails depend upon system size, 
they are thought to be a finite-size effect. Otherwise, the d =  7 data are 
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Fig. 5. Quasistatic susceptibility for d = 7 Ising models fit to a mean-field prediction deter- 
mined from a numerical evaluation of the Curie-Weiss partition sum. Bullets give the theoreti- 
cal mean-field locus. Pluses, crosses, diamonds, circles, and squares indicate d =  7 systems of 
size L = 3, 4, 5, 7, and 9, respectively. 



Spinodal Singularities in Ising Models 471 

ld 

10 
OQ 

OQ 

o" 

i i 1 i t i i 

I m I I 

L 

_1 I ~ I I 

10 

Fig. 6. Finite-size scaling plot for d =  7 metastable Ising models. A least-squares fit gives a 
slope of 1.99. 

approaching the Curie-Weiss behavior more closely as the system size is 
increased. 

Finally, the behavior of Xqs in the context of finite-size scaling is 
investigated. According to standard arguments, the system will feel its finite 
size when the correlation length ~ is equal to the length of the system L. 
For the spinodal, the correlation length scales with the reduced field as 

~ - '  ( x J h )  - 1 / 4  ( 6 )  

which, with Eq. (5), implies that the maximum quasistatic susceptibility 
Zmax scales with L according to the relation 

Xmax ~" Z 2 (7 )  

Figure 6 shows a log-log plot of Zmax versus L. The error bars are largest 
for the L = 7 and L = 9 points. This is thought to be due to the effect of 
critical slowing down, which reduces the accuracy of the statistics. A least 
squares fit to the points gives a slope equal to 1.99, which agrees quite well 
with the predicted value 2 from Eq. (7). On the other hand, in six dimen- 
sions, Xmax was found to be nearly independent of L. 

5. C O N C L U S I O N  

The nucleation rate measurements appear to support the conjecture of 
the existence of spinodal singularities in nearest-neighbor d = 7  Ising 
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models as opposed to the domination of nucleation processes for d=  5 
Ising models. The steeply dropping curves in Fig. 3 have effective slopes 
which are larger in magnitude than the maximum allowable slope 
calculated from classical nucleation theory. Unlike the d=  5 system, the 
d=  7 system does not monotonically cross over to the CNT regime from 
the unstable regime. The spinodal is a good candidate for an explanation 
of the d = 7  curves. As the system size is increased, the curves should 
approach a step function if a spinodal is present, so that there will be a 
sharp division between the unstable and metastable regimes in an infinite 
system. No nucleation events were observed between the presumed 
spinodal and coexistence curve. 

The quasistatic susceptibility data are also consistent with the presence 
of a spinodal. The d=  7 curves appear to collapse reasonably well onto the 
Curie-Weiss mean-field spinodal curve in Fig. 5. Furthermore, a finite-size 
scaling analysis of the data agrees quite well with the behavior which 
would arise due to a spinodal singularity. 
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